The synthesis of α , β -dehydroamino acid esters from hydroxyamino esters using haloacetyl halides Karen Goodall and Andrew F. Parsons*

Department of Chemistry, University of York, Heslington, York YO10 5DD, UK

The preparation of dehydroamino acid esters from reaction of β -hydroxy- α -amino esters with dichloroacetyl chloride, chloroacetyl chloride or trichloroacetyl chloride in the presence of base has been investigated.

The synthesis of α , β -dehydroamino acids has attracted considerable interest in recent years.¹ These compounds, which are constituents of a variety of biologically important peptides,^{1,2} are also valuable intermediates for the preparation of both natural and unnatural optically active amino acids.³ A number of methods are now available for the preparation of dehydroamino acids and one important and well-used approach involves the β -elimination of serine and threonine derivatives which contain suitable leaving groups. Olsen and co-workers,⁴ for example, have made use of a two-step chlorination/base induced elimination method, but reagents including diethyl chlorophosphate,⁵ oxalyl chloride,⁶ N,N'-carbonyldiimidazole,⁷ DiPCD [diisopropylcarbodiimide/copper(I) chloride]8 and DAST (diethylaminosulfur trifluoride/pyridine)⁹ are now available which allow the direct elimination of these hydroxyamino acids to be performed in one step. In this paper we describe a new and direct approach to a variety of dehydroamino derivatives from serine and threonine which benefits from the efficient, mild and cheap nature of the process. In addition, synthetically useful dehydroamino acid esters incorporating N-haloacetyl groups can be prepared via a one-pot dehydration-acylation procedure. The approach is based on the reaction of haloacetyl halides with the hydroxyamino ester 1a-e, 7a-d in the presence of a base as shown in Table 1.10

The reactions involve the formation of an intermediate diester, which can be isolated, or more conveniently treated with a further equivalent of base to effect elimination (in a

		~				
I ahla 1	Formation	nt.	dohvr	Iroamino	and	actore
Table	1 Unnation	o.	ucityc	il Gai illio	auru	Calcia

one-pot reaction) to give the dehydroamino acid ester **3a-e**, **9a-d**, **11**, **13** in 39–89% yield. Whereas elimination using dichloroacetyl chloride or chloroacetyl chloride proceeds under similar conditions the use of trichloroacetyl chloride requires harsher conditions and/or longer reaction times. These results are consistent with an intramolecular mechanism of elimination in which initial deprotonation occurs at the amide or ester side-chain, as shown by **6a** and **16**, respectively, rather than at the α -centre. Mechanistic investigations suggest that for the formation of dehydroamino esters **9a-d** and **11**, amide deprotonation-elimination is of greater importance than ester deprotonation-elimination (although both mechanisms could be operating).

We thank the EPSRC for a research studentship (to K.G.), Prof. R.J.K. Taylor for many helpful discussions and Fiona Robb for preliminary studies using chloroacetyl chloride.

Techniques used: TLC, m.p., microanalysis, FTIR, $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR, LRMS, HRMS

References: 16

Tables: 2

Schemes: 5

Received 27 November 1999; accepted 4 January 2000 Paper 99/38

Alcohol	R	R ¹	R ²	R ³	Haloacetyl halide	Base/ Conditions	Alkene	Alkene Yield (%)	Z-/E-ratio [†]
1a	Н	Bz	Н	н	CICOCHCI	Et _a N/r.t.	3a	67	_
1b	Н	CBZ	Н	Н	CICOCHCI	DBU/heat	3b	48	-
1c	Н	BOC	Н	Н	CICOCHCI	DBU/heat	3c	68	_
1c	Н	BOC	Н	Н	CICOCH2CĮ	DBU/heat	3c	64	_
1d	Me	BOC	Н	Н	CICOCHĆI,	DBU/heat	3d	58	≥20:1
1e	Me	BOC	Bn	Bn	CICOCHCI	DBU/heat	3e	89	3:1
7a	Н	Н	Н	COCHCI,	CICOCHCI,	Et ₂ N/r.t.	9a	88	_
7b	Н	Bn	Н	COCHCI ⁵	CICOCHCI,	Et N/r.t.	9b	89	_
7b	Н	Bn	Н	COCH2CI	CICOCH2CI	Et ₃ N/heat	11	78	_
7b	Н	Bn	Н	رOCCI	CICOCCĺ	DĔU/heat	13	85	_
7c	Me	Н	Н	COCHČI,	CICOCHČI,	DBU/heat	9c	39	>20:1
7d	Me	Bn	Н	COCHCI ²		DBU/heat	9d	73	13:1

[†] As indicated by the ¹H NMR spectrum⁴; Bz = benzoyl

* To receive any correspondence.

E-mail; afp2@york.ac.uk

J. Chem. Research (S), 2000, 54–55 J. Chem. Research (M), 2000, 0312–0326

References cited in this synopsis

- (a) U. Schmidt and A. Lieberknecht, J. Wild, *Synthesis*, 1988, 159. (b) S.A. Burrage, T. Raynham and M. Bradley, *Tetrahedron Lett.*, 1998, **39**, 2831. (c) P.W. Groundwater, T. Sharif, A. Arany, D.E. Hibbs, M.B. Hursthouse and M. Nyerges, *Tetrahedron Lett.*, 1998, **39**, 1433.
- 2 (a) C-g. Shin, K. Okumura, A. Ito and Y. Nakamura, *Chem. Lett.*, 1994, 1301. (b) Y. Nakamura, A. Ito and C-g. Shin, *Bull. Chem. Soc. Jpn.*, 1994, **67**, 2151.
- 3 (a) J.R. Axon and A.L.J. Beckwith, J. Chem. Soc., Chem. Commun., 1995, 549. (b) J.M. Jiménez, R. Casas and R.M. Ortuño, Tetrahedron Lett., 1994, **35**, 5945. (c) M. Tamura and K. Harada, Bull. Chem. Soc. Jpn., 1980, **53**, 561. (d) P.A. Lander and L.S. Hegedus, J. Am. Chem. Soc., 1994, **116**, 8126. (e) C. Cativiela, J.I. García, J.A. Mayoral, E. Pires, A.J. Royo and

F. Figueras, *Tetrahedron*, 1995, **51**, 1295. (f) U. Schmidt, S. Kumpf and K. Neumann, J. Chem. Soc., Chem. Commun., 1994, 1915.

- 4 (a) A. Srinivasan, R.W. Stephenson and R.K. Olsen, J. Org. Chem., 1977, **42**, 2253 and 2256. (b) A. Srinivasan, K.D. Richards and R.K. Olsen, *Tetrahedron Lett.*, 1976, 891.
- 5 F. Berti, C. Ebert and L. Gardossi, *Tetrahedron Lett.*, 1992, **33**, 8145.
- 6 D. Ranganathan, K. Shah and N. Vaish, J. Chem. Soc., Chem. Commun., 1992, 1145.
- 7 R. Andrusziewicz and A. Czerwinski, Synthesis, 1982, 968.
- 8 C. Balsamini, E. Duranti, L. Mariani, A. Salvatori and G. Spadoni, *Synthesis*, 1990, 779.
- 9 L. Somekh and A. Shanzer, J. Org. Chem., 1983, 48, 907.
- 10 Part of this work has appeared as a preliminary communication: K. Goodall and A.F. Parsons, *Tetrahedron Lett.*, 1995, **36**, 3259.